Машиностроительное черчение Метод центрального проецирования

Основные геометрические фигуры

Способы задания геометрических фигур.

 Два способа задания геометрических фигур: кинематический и статический.

 Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры. Пример записи: “”. Здесь – название фигуры в общем случае, – образующая линия (точка с запятой), и  – направляющие линии и  – направляющая плоскость. Если характер образующей понятен из названия фигуры, то в скобках отражаются только направляющие элементы. Например: “Коническая поверхность общего вида ”. В этом случае из названия фигуры ясно, что образующей является прямая линия, а в скобках – только направляющие элементы: кривая линия и вершина конуса . Курс лекций по начертательной геометрии Результат накладывается или полностью совпадает с вырожденной проекцией одной из пересекающихся фигур. На комплексном чертеже остается только построить вторую проекцию результата пересечения. Используя принадлежность результата пересечения к пересекающейся фигуре общего положения.

 Статический способ основан на задании фигуры каркасом из неподвижных точек и линий. Каркас называется дискретным, если нет математической закономерности образования его элементов. Уплотнить такой каркас дополнительными элементами можно только с определенными погрешностями. Примером могут служить дискретные каркасы топографических и сложных технических поверхностей. Непрерывный каркас отличается закономерным образованием его элементов. Это дает возможность теоретически бесконечно уплотнять каркас дополнительными элементами. Примером может служить каркас конуса вращения, заданного семейством окружностей с центрами на оси вращения, радиусы которых ограничены прямой линией, проходящей через вершину конуса.

Прямая линия, плоскость и многогранник

  Прямая линия может быть задана одним из двух способов (Рис13 и 14):

– Точкой и направлением (кинематический способ). .

– Двумя точками (статический способ, точечный каркас): .

 Возможные способы задания плоскости (Рис.15):

– Тремя точками. .

– Точкой и прямой линией .

– Двумя параллельными линиями .

– Двумя пересекающимися линиями

– Треугольником . И так далее.


Метод вспомогательных секущих плоскостей