Машиностроительное черчение Метод центрального проецирования

Перпендикулярность прямых и плоскостей.

Пример 1 (Рис.64). Через точки  и . И провести перпендикуляры к линии .

Через любую точку в пространстве можно провести бесконечное число прямых, пересекающих линию  или скрещивающихся с ней под прямым углом. Но не все прямые, углы проецируются без искажения. Поэтому для проведения перпендикуляров предпочтительно задавать линии уровня.

Решение:

1). ,

2). (fB)lf2l2

Для прямой, перпендикулярной к плоскости, дадим поэтапно три определения: общее для пространства, в принципе применимое для комплексного чертежа и практически применимое для выполнения графических построений:

1) Прямая перпендикулярна к плоскости, если она перпендикулярна к двум не параллельным прямым этой плоскости.

2) Прямая перпендикулярна к плоскости, если она перпендикулярна (в частности) к двум линиям уровня на этой плоскости.

3) Прямая перпендикулярна к плоскости, если горизонтальная проекция прямой перпендикулярна к горизонтальной проекции горизонтали этой плоскости, а фронтальная проекция прямой- перпендикулярна к фронтальной проекцией фронтали. (Используются любые пары изображения перпендикуляра и с профильной проекцией. Тогда профильная проекция прямой перпендикулярна к профильной прямой плоскости).

Пример 2 (Рис.65). Через точку  провести перпендикулярную к плоскости . Кинематический анализ кривошипно-ползунного механизма Цель работы - кинематическое исследование кривошипно-ползунного механизма, включающее определение величины перемещения, скорости и ускорения ползуна в зависимости от угла поворота кривошипа. Кривошипно-ползунный (кривошипно-шатунный) механизм- четырехзвенник с тремя вращательными и одной поступательной кинематическими парами.

Дано:

.

Решение:

1). ,

2). ,

3).

?: (n A) ∆.

Пример 3 (Рис.66). Через точку провести плоскость, перпендикулярную к плоскости .

 

 

 

 

 

Зададим искомую плоскость двумя пересекающимися прямыми. Одна из них может быть произвольная, вторая – обязательно перпендикулярной к заданной плоскости.

Дано:

Решение:

1).  – произвольная прямая,

2). ,

3). .

?: .


Метод вспомогательных секущих плоскостей