Подготовка к контрольной работе по математике

Пример . Вычислить определитель

,

в котором все элементы по одну сторону от главной диагонали равны

нулю.

Решение. Разложим определитель А по первой строке: Примеры решения задач Найти решение уравнения удовлетворяющее начальным условиям

.

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

.

И так далее. После n шагов придем к равенству A = а 11 а 22... a nn.

Пример . Вычислить определитель .

Определители Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего

Свойства определителей

Пример . Не вычисляя определителя , показать, что он равен нулю.

 

Ранг матрицы

Пример . Найти методом окаймления миноров ранг матрицы .

Обратная матрица

Для матрицы найти обратную.

Критерий совместности Кронекера-Капелли

 

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: , равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.


Метод вспомогательных секущих плоскостей