Конспект лекций по электротехнике. Курсовой расчет

Трехфазные цепи

В предыдущей главе рассматривалась работа электрических цепей, питающихся от однофазных синусоидальных источников тока или напряжения. Наряду с однофазными источниками существуют источники энергии, количество фаз у которых составляет два, три, четыре и т.д., и которые характеризуются тем, что ЭДС этих фаз имеют одинаковую частоту, но сдвинуты друг относительно друга на некоторую одинаковую фазу. Такие генераторы называются многофазными, а электрические цепи с такими источниками – многофазными.

Трехфазный генератор

Среди всего многообразия многофазных источников трехфазный получил наибольшее практическое применение. В связи с этим основные исследования многофазных цепей будем проводить на примере трехфазных. Рассмотрим вопрос реализации трехфазного источника, которым является трехфазный генератор.

 Рис.4.1. Трехфазный генератор

В целях упрощения понимания принципа работы генератора обмотки представлены одним витком. В качестве ротора генератора выбран постоянный магнит. Каждая из обмоток имеет начало – клеммы А, В, С и конец – Х, Y, Z. Обмотки в пространстве сдвинуты на 120° друг относительно друга. Из чего следует, что максимумы ЭДС в них достигаются в разные моменты времени, отстоящие друг от друга на одну треть периода T = 2p / w, где w - угловая частота вращения ротора.

Последовательность, в которой ЭДС достигают максимума в соответствующих фазах, носит название порядка чередования фаз. Прямым порядком чередования фаз называют последовательность, при которой фаза B отстает от фазы А на T/3, и фаза С отстает от фазы В на T/3 – т.е. А, В, С. На рис.4.2 изображен график мгновенных значений ЭДС для прямого порядка чередования фаз. Изменение направления вращения ротора на противоположное меняет эту последовательность чередования фаз, и она станет уже А, С, В.

Рис.4.2. Графики мгновенных ЭДС фаз А, B, С

eА=Emsin(wt + p/2);

eВ=Emsin(wt + p/2 - 2p/3); 89(4.1)

eС=Emsin(wt + p/2 - 2p/3 - 2p/3).

Поскольку ЭДС каждой фазы генератора синусоидальна, то им в соответствие можно на комплексной плоскости построить векторы фазных ЭДС  (рис.4.3).

Рис.4.3. Векторная диаграмма фазных ЭДС

Записать компонентные уравнения ветвей связи

Компонентные уравнения (уравнения ветвей) представляют собой математические модели соответствующих ветвей и выражают ток и напряжение каждой ветви через параметры элементов этой ветви. Число таких уравнений равно числу ветвей, а вид каждого из них зависит только от состава ветви, т.е. от входящих в нее идеализированных двухполюсных элементов.

Рассмотрим компонентные уравнения для ветвей с идеализированными элементами.

Уравнения, составленные на основании закона Ома:

 или , (9)

где  - проводимость;

 (напряжение – разность потенциалов между точками участка цепи),

представляют собой компонентные уравнения ветви, содержащей один идеализированный пассивный элемент – сопротивление:

Пусть ток течет от точки 1 к точке 2 (от более высокого потенциала к более низкому). Следовательно, потенциал точки 1 (φ1) выше потенциала точки 2 (φ2) на величину, равную произведению тока I на сопротивление R:

. (10)

В соответствии с определением (под напряжением, на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка), напряжение между точками 1 и 2.

Следовательно, напряжение на сопротивлении равно произведению тока, протекающего по сопротивлению, на величину этого сопротивления . (12)


На главную