Дисциплина "Сопротивление материалов". Выполнение лабораторных работ

Условие прочности при изгибе

Максимальное нормальное напряжение в балке возникает в сечении, где изгибающий момент достигает наибольшей по модулю величины, то есть в опасном сечении

.

Условие прочности при изгибе формулируется следующим образом: Балка будет прочной, если максимальные нормальные напряжения не превысят допускаемых напряжений

.

Величина допускаемых напряжений назначается в зависимости от материала, из которого изготовлена балка.

Пластичные материалы обладают примерно равными пределами текучести на сжатие  и на растяжение   равны между собой и поэтому .

Для хрупких материалов, у которых прочность при сжатии выше, чем при растяжении, допускаемые напряжения на растяжение и сжатие, как правило, не равны между собой   и, поэтому, необходимо записывать два условия прочности

,

где   и  - расстояния от нейтральной оси до наиболее удаленных растянутого и сжатого волокон.

Перемещения при плоском изгибе При изгибе рассматриваются перемещений: прогиб и угол поворота поперечного сечения. Прогибом балки δ называется величина, на которую перемещается центр тяжести поперечного сечения в направлении, перпендикулярном первоначальной оси балки. Углом поворота поперечного сечения q называется угол, на который поворачивается поперечное сечение при деформации балки

Определение характеристик упругости изотропных материалов Методические указания к выполнению лабораторной работы № 2-3 по курсу “Сопротивление материалов”

Определение модуля сдвига для изотропных материалов Экспериментальное определение характеристик упругости алюминиевого сплава при кручении: модуля сдвига G. Ознакомление с методикой измерения угловых деформаций путем замера линейных перемещений индикаторами часового типа.

Использование метода наименьших квадратов для оценки характеристик упругости изотропных материалов При определении характеристик упругих свойств материалов E, m и G  в данной лабораторной работе используются линейные зависимости (закон Гука для растяжения-сжатия и кручения), в которые входят искомые величины.

Расчёт многопролётной статически определимой балки

Построение эпюры поперечных сил

Расчет плоской статически определимой фермы

Рассмотрим заданную ферму, загруженную единичным грузом

Расчет фермы козлового крана Ферма козлового крана представляют собой стержни, имеющие прямолинейную, ломанную или криволинейную ось.

Влияние пластической деформации на структуру и свойства металла: наклеп С увеличением степени деформации характеристики пластичности (относительное удлинение, относительное сужение) и вязкости (ударная вязкость) уменьшаются, а прочностные характеристики (предел упругости, предел текучести, предел прочности) и твердость увеличиваются

Напряжения при поперечном изгибе

Нормальные напряжения, возникающие при поперечном изгибе, с достаточной для практических целей точностью могут определяться по формулам чистого изгиба. Поэтому условия прочности по нормальным напряжениям имеют тот же вид, что и для чистого изгиба.

Касательные напряжения в поперечных сечениях балки появляются при нагружении балки сосредоточенными и распределенными силами. Величина их определяется формулой Журавского:

,

где   - поперечная сила,

   - статический момент отсеченной части сечения относительно нейтральной оси,

  b - ширина сечения,

  - осевой момент инерции.

 Эпюра касательных напряжений показана на рис.6.6.

Условие прочности по касательным напряжениям будет иметь вид:

где  - наибольшая по модулю поперечная сила,

 - статический момент инерции верхней половины сечения.

Полная проверка прочности балки

  При поперечном изгибе в произвольной точке балки (рис.6.6 т.В) одновременно действуют как нормальные напряжения, так и касательные. Материал балки находится при плоском напряженном состоянии, поэтому для оценки прочности следует воспользоваться теориями прочности, например, третьей . Если подставить выражения для главных напряжений (3.4), то получим

.

 Эпюра эквивалентных напряжений, построенная для прямоугольного сечения, показана на рис.6.6.

 Для обеспечения прочности балки при совместном действии как нормальных, так и касательных напряжений должно выполняться условие

.

Рациональные формы сечений балок

 Рациональным можно считать сечение балки, которое при равной с другими сечениями площади имеет наименьшие напряжения.

 Максимальные напряжения, возникающие в балке при действии заданной нагрузки, тем меньше чем больше осевой момент сопротивления сечения изгибу. Поэтому, сечения с большим Wx ,будут более рациональными. Так например, прямоугольное сечение, показанное на рис.6.7а предпочтительнее использовать при изгибе под действием вертикальной нагрузки так как осевой момент сопротивления сечения изгибу для него будет больше чем для этого же сечения, но повернутого на 90о (рис.6.7б).

 Анализируя эпюры напряжений, можно отметить, что на продольной линии нормальные напряжения равны нулю, касательные напряжения достигают максимума, в крайних волокнах, наиболее удаленных от продольной линии, наоборот нормальные напряжения достигают наибольших по модулю значений, а касательные напряжения равны нулю. Расчетная практика показала, что нормальные напряжения, как правило, в несколько раз больше касательных. Поэтому имеет смысл проектировать сечения так, что в зоне действия больших напряжений находилось бы большая часть материала. Этому требованию отвечают сечения в виде двутавровых и швеллеровых прокатных профилей, а также различные коробчатые и кольцевые сечения.

 

 

Лекция 7

Классификация и маркировка легированных сталей. Применение. Влияние легирующих  элементов на равновесную структуру сталей.

План:

Понятие «легированные  стали»

Назначение легирующих элементов

Распределение легирующих элементов в стали.

Принцип маркировки легированных сталей.

Влияние элементов на полиморфизм железа

Легированные стали

 Углеродистые  стали не всегда удовлетворяют требованиям, предъявляемым к материалам современной  техникой: например, при увеличении нагрузок и при работе на больших скоростях  необходимо, чтобы деталь имела высокие эксплуатационные свойства, значительно  увеличивать размеры деталей. Кроме того, углеродистые стали обладают низкой коррозионной  устойчивостью и стойкостью при повышенных температурах, имеют высокий коэффициент  линейного расширения…. .

 Значительно улучшает физико-механические и химические  свойства сталей введение в их состав легирующих компонентов.

Элементы, специально вводимые в сталь в определенных концентрациях с целью изменения ее строения и свойств, называются легирующими элементами, а стали – легированными.

Содержание легирующих элементов может изменяться в очень широких пределах: хром или никель – 1% и более процентов; ванадий, молибден, титан, ниобий – 0,1… 0,5%; также кремний и марганец – более 1 %. При содержании легирующих элементов до 0,1 % – микролегирование.

В конструкционных сталях легирование осуществляется с целью улучшения механических свойств (прочности, пластичности). Кроме того меняются физические, химические, эксплуатационные свойства.

Легирующие элементы повышают стоимость стали, поэтому их использование должно быть строго обоснованно.

 Назначение легирующих элементов.

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100)oС. При большом его содержании  ( выше 12 %) сталь становится нержавеющей.

Дополнительные легирующие элементы.

Бор - 0.003%. Увеличивает прокаливаемость, а также повышает порог хладоломкости (+20…-60 oС.

Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.

Титан (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.

Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до –20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.

Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает прочность и вязкость.

Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.

Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

При легировании хромомарганцевых сталей кремнием получают, стали – хромансиль (20ХГС, 30ХГСА). Стали обладают хорошим сочетанием прочности и вязкости, хорошо свариваются, штампуются и обрабатываются резанием. Кремний повышает ударную вязкость и температурный запас вязкости.

Добавка свинца, кальция – улучшает обрабатываемость резанием. Применение упрочнения термической обработки улучшает комплекс механических свойств.

Распределение легирующих элементов в стали.

Легирующие элементы растворяются в основных фазах железоуглеродистых сплавов ( феррит, аустенит, цементит), или образуют специальные карбиды.

Растворение легирующих элементов в 10_files/image010.gifпроисходит в результате замещения атомов железа атомами этих элементов. Эти атомы создают в решетке напряжения, которые вызывают изменение ее периода.

Изменение размеров решетки вызывает изменение свойств феррита – прочность повышается, пластичность уменьшается. Хром, молибден и вольфрам упрочняют меньше, чем никель, кремний и марганец. Молибден и вольфрам, а твкже кремний и марганец в определенных количествах, снижают вязкость.

В сталях карбиды образуются металлами, расположенными в таблице Менделеева левее железа (хром, ванадий, титан), которые имеют менее достроенную d – электронную полосу.

В процессе карбидообразования углерод отдает свои валентные электроны на заполнение d – электронной полосы атома металла, тогда как у металла валентные электроны образуют металлическую связь, обуславливающую металлические свойства карбидов.

При соотношении атомных радиусов углерода и металла более 0,59 образуются типичные химические соединения: Fe3C, Mn3C, Cr23C6, Cr7C3, Fe3W3C – которые имеют сложную кристаллическую решетку и при нагреве растворяются в аустените.

При соотношении атомных радиусов углерода и металла менее 0,59 образуются фазы внедрения: Mo2C, WC, VC, TiC, TaC, W2C – которые имеют простую кристаллическую решетку и трудно растворяются в аустените.

Все карбиды обладают высокой твердостью и температурой плавления.

Принцип маркировки легированных сталей.

Качественные и высококачественные легированные стали

Обозначение буквенно-цифровое. Легирующие элементы имеют условные обозначения, Обозначаются буквами русского алфавита.

Обозначения легирующих элементов:

Х – хром, Н – никель, М – молибден, В – вольфрам,

К – кобальт, Т – титан, А – азот ( указывается в середине марки),

Г – марганец, Д – медь, Ф – ванадий, С – кремний,

П – фосфор, Р – бор, Б – ниобий, Ц – цирконий,

Ю – алюминий, А -в середине-азот,  А в конце марки –высококачественная сталь.


На главную